Новости по теме

Владимир Михеев: Сегодня кто быстрее считает, тот лучше летает

На вертолётной выставке HeliRussia 2016 КРЭТ впервые представил демонстратор новых технологий. Выполненный из стекла прототип корпуса скоростного вертолёта показывает, из каких узлов, агрегатов и компьютерных технологий состоит сегодня боевая машина. О том, какую функцию выполняют современные приборы, и о роли человека в пилотировании вертолёта в интервью сайту телеканала «Звезда» рассказал советник первого заместителя гендиректора концерна Владимир Михеев.

– Владимир Геннадьевич, расскажите, пожалуйста, из каких блоков сегодня состоит авионика современного боевого вертолёта?

– Сегодня любое оборудование на современных летательных аппаратах должно быть универсальным, а это возможно только тогда, когда вся обработка сигналов идёт в цифровом виде. В данном случае это полностью цифровой борт. В нём всё, начиная от блоков питания, является цифровыми устройствами. Здесь и вся коммутация, и взаимозаменяемость решены на уровне цифровых блоков. Если выходит из строя один блок, то на борту любого летательного аппарата есть бортовая система контроля и диагностики состояния деталей и узлов.

Внутри стоит мощнейшая цифровая вычислительная машина, на которую приходит информация от 5 тыс. датчиков о состоянии каждого узла и агрегата летательного аппарата. Сюда приходит информация даже о состоянии винта, потому что сегодня винт – это не просто кусок железа, а сложное композитное устройство, начиненное массой датчиков, которые оценивают напряженность винта, его ресурс, склонность к растрескиванию, пробоины, если это боевой летательный аппарат. Эта бортовая система разработана для вертолёта Ми-28, и она же идёт на перспективный скоростной вертолёт.


Перспективный российский скоростной вертолёт (ПСВ) выполняет полёт со скоростью до 450 км/ч.

Система контроля и диагностики также позволяет снизить человеческий фактор и является совсем новой. Если на борту возникает какая-то неисправность, то пилот часто обнаруживает её последним, когда она уже начинает проявляться и влияет на полёт. Когда возникает минимальное подозрение о возникновении нестандартной работы блока или узла, применяется библиотека устранения этих неполадок.

Система тут же начинает производить замену одного оборудования другим и переводит работу двигателя и лопастей в соответствующий режим, чтобы они как можно дольше работали без разрушения. Она проводит и антиаварийные мероприятия, извещает пилота, передает сигнал бедствия и т.д. Это идёт в параллельном режиме.

– Что внутри этих блоков? Из чего они состоят?

– Все блоки очень похожи. С виду это обычные металлические ящики, но внутри них стоят мощные вычислительные машины, которые в различной отечественной программной среде обрабатывают информацию и о полёте, и о применении оружия, и о пилотировании, и о защите летательного аппарата, и о любых других параметрах. Поэтому при выходе из строя отдельных узлов есть возможность переброски по команде системы контроля функции, например, головного компьютера на какой-то один из периферийных, и он вместо решения вопросов, например, навигации будет заниматься пилотированием.

Читайте также  Причинами крушения «Boeing 737» в Ростове стала паника и ошибки пилотов

То же самое мы говорим и о датчиках.

Мы понимаем, что надо делать эти датчики более универсальными и компоновать так, чтобы их были не тысячи, а хотя бы сотни. Поэтому современный датчик начинает обрабатывать массу информации.

И так как от каждого датчика нужно вести проводок, то летательный аппарат состоит из тысяч метров проводов. Чтобы этого не было, мы пытаемся поставить в блок, кроме датчика, и обрабатывающий чип – мини-компьютер. Он будет обрабатывать эту информацию на месте и передавать отсюда не по 124 проводам, а по одному волоконно-оптическому проводочку к центральному компьютеру. Уже оттуда считывается готовая информация, вследствие чего резко возрастают возможности по её обработке.

Если раньше от сотен датчиков приходила информация, обрабатывалась и только через 1–2 секунды суперкомпьютер реагировал на неё, то здесь через 2 микросекунды уже приходит информация и её можно использовать. Сразу улучшаются все характеристики, включая пилотажные. Летательный аппарат реагирует мгновенно. Если раньше ты тронул ручку, а он подумал, посчитал и потом поехал, то теперь ты ручку ещё не тронул, а он уже полетел.

– Какая система навигации стоит сегодня на современном вертолёте?

– Современный летательный аппарат требует современной прецизионной навигации, поэтому на все летательные аппараты мы начинаем ставить бесплатформенную инерциальную навигационную систему (БИНС).

– Это та, которая не зависит от спутников?

– Она ни от чего не зависит. Там стоит огромное количество линейных датчиков и угловых ускорений. Аппарат качнулся в сторону, они это посчитали и сказали, что аппарат сдвинулся в это время на 3 см влево. Там стоит несколько лазерных гироскопов. Там же есть и каналы связи со спутниками для коррекции, а также каналы с наземными навигационными системами. Если всё пропало, то он автономный, если нет, то он всё равно корректирует свои характеристики. Он всегда определяет своё положение в пространстве.

Читайте также  Грузовая авиация в России — непаханое поле работы

Это нужно и для пилотирования, и для применения оружия. Потому что отсюда сигналы записываются в голову ракеты, где стоит такой же свой навигационный блок меньшего размера, который показывает местоположение самой ракеты. Сейчас очень важны информация и скорость её передачи от объекта к объекту, поэтому всё унифицируется.

Сегодня кто быстрее считает, тот лучше летает. Уже неважно, как у тебя стоят крылья и всё остальное. Уже важно, успеваешь ли ты делать расчеты. А все они делаются в цифровой форме, и для преобразования сигналов из одной формы в другую стоят специальные блоки.

Кроме того, много информации нужно записать на аварийные самописцы. Они используются не только как аварийные, но и для обработки послеполётной информации. Они записывают десятки гигабайт технической информации и определённым образом защищены от всего (падения, радиации). Там нет движущихся частей. Это, грубо говоря, кристалл, на котором записывается информация. Защищённый специальным образом, он может часами гореть в мартеновской печи, после чего информацию с него можно считать.

– А как защищён современный вертолёт?

– На нём стоит лазерная станция защиты – часть блока от системы «Президент-С». Кроме этого, здесь стоят расходуемые средства радиоэлектронной борьбы.

Интеллектуальное устройство выброса распознает и выстреливает специальными патронами: тепловыми ловушками, радиолокационными ловушками, ложными целями с аэродинамическими качествами, отдельными передатчиками помех. Всё это в нужный момент в нужном направлении отстреливается. Таким образом, ракета получает 20–30, а иногда и несколько сотен ложных целей, и ей нужно при своих угловых скоростях выбрать из них основную.

Даже если у неё 20 целей, то по простому расчёту из 20 она будет стрелять по ближайшей. Поэтому они выстреливаются в направлении этой ракеты. Они повышают живучесть летательного аппарата многократно. Такие системы востребованы не только на военной, но и на гражданской технике.


ИКАО приняла решение, что, если гражданский борт летит в опасный район, он должен быть застрахованным по специальной программе. А чтобы оформить страховку, на борту он должен иметь бортовой комплекс обороны и средства защиты. Сейчас многие авиакомпании это понимают.

– Какие ещё системы вы демонстрируете на выставке?
– Системы управления общевертолётным оборудованием, систему управления оружием. Эти компьютеры могут быть универсальными, и их возможности могут использоваться для решения других задач. Не только на военные, но уже и на гражданские летательные аппараты ставится система технического зрения. Когда лётчик на вертолёте Ми-28 на скорости 340 км/ч, он видит вперёд 5–6 градусов на дальность 500–600 м.

Читайте также  Повышение безопасности — насущная проблема сельхозавиации

Больше он физически не успевает, всё остальное у него сливается при такой скорости и на высоте боевого применения (15 м).

Один из множества экранов в кабине пилотов может быть использован для вывода информации технического зрения. Особенно это актуально в условиях плохой видимости: облачности, тумана, задымления. Тогда пилот летит по приборам. Среди них – локатор, тепловизор и камеры, которые видят в восемь раз шире, чем глаз человека (инфракрасный, ультрафиолетовый диапазоны).

Всё это обрабатывается, и выдаётся изображение в виде цифровой карты местности, и пилот в этом случае видит на 20–30 км. Причём опасные предметы сближения, метеобразования, техника врага отдельно отмечаются и подписываются на экране. Для боевой техники уже назначается соответствующее оружие, и пилот только принимает решение утвердить или заменить боеприпас.

– Какова же роль пилота в современном боевом вертолёте, который всё больше становится компьютеризированным?

— Пилот со своими характеристиками значительно ограничивает возможности современного летательного аппарата, а перспективного – тем более. Мы выдерживаем перегрузки в 7-8G, а сегодня летательный аппарат 26G делает легко.

Мы не выдерживаем серьёзной радиационной перегрузки, если вышли на 10–12 км. У нас всё время проблемы с воздухом. Во время большой перегрузки нужно заменять кислород азотом, потому что кровь начинает закипать. Человек может потерять сознание. У человека есть своя реакция, и он иногда вмешивается в автоматическое управление. Таких моментов возникает десятки, поэтому человек очень ограничивает возможности авиации.

Благодаря техническому зрению, локации и навигации боевые машины могут гораздо эффективнее выполнять задачи. Однако мы считаем, что количество беспилотной авиации будет расти и через четыре-пять лет начнётся её скачок.